Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
1.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38418917

RESUMO

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Assuntos
Processamento Alternativo , Evolução Molecular , Hominidae , Proteínas com Domínio T , Cauda , Animais , Humanos , Camundongos , Processamento Alternativo/genética , Elementos Alu/genética , Modelos Animais de Doenças , Genoma/genética , Hominidae/anatomia & histologia , Hominidae/genética , Íntrons/genética , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Fenótipo , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Cauda/anatomia & histologia , Cauda/embriologia , Éxons/genética
3.
Science ; 375(6582): 770-774, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175822

RESUMO

Lizard tail autotomy is an antipredator strategy consisting of sturdy attachment at regular times but quick detachment during need. We propose a biomimetic fracture model of lizard tail autotomy using multiscale hierarchical structures. The structures consist of uniformly distributed micropillars with nanoporous tops, which recapitulate the high-density mushroom-shaped microstructures found on the lizard tail's muscle fracture plane. The biomimetic experiments showed adhesion enhancement when combining nanoporous interfacial surfaces with flexible micropillars in tensile and peel modes. The fracture modeling identified micro- and nanostructure-based toughening mechanisms as the critical factor. Under wet conditions, capillarity-assisted energy dissipation pertaining to liquid-filled microgaps and nanopores further increased the adhesion performance. This research presents insights on lizard tail autotomy and provides new biomimetic ideas to solve adhesion problems.


Assuntos
Comportamento Animal , Biomimética , Lagartos/fisiologia , Modelos Biológicos , Cauda/fisiologia , Adesividade , Animais , Fenômenos Biofísicos , Dimetilpolisiloxanos , Lagartos/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Regeneração , Cauda/anatomia & histologia
4.
Nature ; 600(7888): 259-263, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34853468

RESUMO

Armoured dinosaurs are well known for their evolution of specialized tail weapons-paired tail spikes in stegosaurs and heavy tail clubs in advanced ankylosaurs1. Armoured dinosaurs from southern Gondwana are rare and enigmatic, but probably include the earliest branches of Ankylosauria2-4. Here we describe a mostly complete, semi-articulated skeleton of a small (approximately 2 m) armoured dinosaur from the late Cretaceous period of Magallanes in southernmost Chile, a region that is biogeographically related to West Antarctica5. Stegouros elengassen gen. et sp. nov. evolved a large tail weapon unlike any dinosaur: a flat, frond-like structure formed by seven pairs of laterally projecting osteoderms encasing the distal half of the tail. Stegouros shows ankylosaurian cranial characters, but a largely ancestral postcranial skeleton, with some stegosaur-like characters. Phylogenetic analyses placed Stegouros in Ankylosauria; specifically, it is related to Kunbarrasaurus from Australia6 and Antarctopelta from Antarctica7, forming a clade of Gondwanan ankylosaurs that split earliest from all other ankylosaurs. The large osteoderms and specialized tail vertebrae in Antarctopelta suggest that it had a tail weapon similar to Stegouros. We propose a new clade, the Parankylosauria, to include the first ancestor of Stegouros-but not Ankylosaurus-and all descendants of that ancestor.


Assuntos
Agressão , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Fósseis , Cauda/anatomia & histologia , Cauda/fisiologia , Animais , Regiões Antárticas , Chile , Comportamento Predatório , Esqueleto
5.
Artigo em Inglês | MEDLINE | ID: mdl-34517130

RESUMO

The most superficial epidermal layer in endotherms is the stratum corneum (SC), which is composed of dead corneocytes embedded in a lipid matrix with free fatty acids, cholesterol, ceramides, and cerebrosides; the lipid composition of the SC determines its permeability to water vapor. Lipids that are more polar, have longer hydrocarbon chains, and are less bulky are often packed in more ordered phase states to slow cutaneous evaporative water loss (CEWL); these lipids also resist transitions to more disordered phases at high ambient temperatures (Ta). In bats, wing and tail membranes (wing patagia and tail uropatagium, respectively) allow powered flight, but increase surface area, and hence CEWL, with implications for survival in arid environments. We captured Pipistrellus kuhlii from an arid habitat and measured the lipid composition of the SC of the plagiopatagium in the wing, the uropatagium, and the non-membranous region (NMR) of the body using thin layer chromatography and reversed phase high performance liquid chromatography coupled with atmospheric pressure photoionization mass spectrometry. The patagia contained more cholesterol and shorter-chained ceramides, and fewer cerebrosides than the NMR, indicating that the lipid phase transition temperature in the patagia is lower than in the NMR. Thus, at moderate Ta the lipids in the SC in all body regions will remain in an ordered phase state, allowing water conservation; but as Ta increases, the lipids in the SC of the patagia will more easily transition into a disordered phase, resulting in increased CEWL from the patagia facilitating efficient heat dissipation in hot environments.


Assuntos
Composição Corporal , Quirópteros/metabolismo , Clima Desértico , Epiderme/metabolismo , Metabolismo dos Lipídeos , Cauda/metabolismo , Perda Insensível de Água , Asas de Animais/metabolismo , Animais , Superfície Corporal , Ceramidas/metabolismo , Cerebrosídeos/metabolismo , Quirópteros/anatomia & histologia , Colesterol/metabolismo , Cromatografia de Fase Reversa , Cromatografia em Camada Delgada , Feminino , Temperatura Alta , Israel , Masculino , Espectrometria de Massas , Permeabilidade , Cauda/anatomia & histologia , Asas de Animais/anatomia & histologia
6.
Nat Commun ; 12(1): 4712, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354073

RESUMO

Single-pixel holography (SPH) is capable of generating holographic images with rich spatial information by employing only a single-pixel detector. Thanks to the relatively low dark-noise production, high sensitivity, large bandwidth, and cheap price of single-pixel detectors in comparison to pixel-array detectors, SPH is becoming an attractive imaging modality at wavelengths where pixel-array detectors are not available or prohibitively expensive. In this work, we develop a high-throughput single-pixel compressive holography with a space-bandwidth-time product (SBP-T) of 41,667 pixels/s, realized by enabling phase stepping naturally in time and abandoning the need for phase-encoded illumination. This holographic system is scalable to provide either a large field of view (~83 mm2) or a high resolution (5.80 µm × 4.31 µm). In particular, high-resolution holographic images of biological tissues are presented, exhibiting rich contrast in both amplitude and phase. This work is an important step towards multi-spectrum imaging using a single-pixel detector in biophotonics.


Assuntos
Holografia/métodos , Animais , Encéfalo/anatomia & histologia , Compressão de Dados/métodos , Compressão de Dados/estatística & dados numéricos , Feminino , Holografia/instrumentação , Holografia/estatística & dados numéricos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Dispositivos Ópticos , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Imagem Óptica/estatística & dados numéricos , Fenômenos Ópticos , Cauda/anatomia & histologia
7.
Naturwissenschaften ; 108(4): 27, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34137928

RESUMO

In vertebrates, the main tissue devoted to energy storage is the adipose tissue. In salamanders, energy reserves can also be stored in the adipose tissues of the tail. Therefore, we evaluated if energy storage in salamanders' tails is related to individual body condition, life cycle and environmental constraints. We calculated a scaled measure of tail width for 345 salamanders belonging to six Mediterranean taxa exhibiting wide phylogenetic, behavioural and ecological variation. We related this measure to the Scaled Mass Index (SMI), a body condition index which reliably predicts body fat. We found significant relationships between the SMI and scaled tail width in the terrestrial Spectacled salamander and Alpine salamanders, independently of sex. At the same time, we found that energy storage in the tail is maximum in Alpine Salamanders, which experience reduced activity periods and restricted access to resources. Conversely, we found a significant effect of sex in Imperial cave salamanders, where females store reserves in the tail to counterbalance resource investment in parental care, and in Corsican Brook Newts, where the reproductive function of males' tails may imply a greater tail width. Finally, in the biphasic Great Crested Newt, tail width was not related to SMI in both sexes.


Assuntos
Ecossistema , Cauda/anatomia & histologia , Urodelos/anatomia & histologia , Urodelos/metabolismo , Tecido Adiposo/metabolismo , Animais , Metabolismo Energético , Feminino , Masculino , Fatores Sexuais , Cauda/metabolismo
8.
Integr Comp Biol ; 61(2): 455-463, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34114009

RESUMO

Previous studies have focused on documenting shape variation in the caudal vertebrae in chameleons underlying prehensile tail function. The goal of this study was to test the impact of this variation on tail function using multibody dynamic analysis (MDA). First, observations from dissections and 3D reconstructions generated from contrast-enhanced µCT scans were used to document regional variation in arrangement of the caudal muscles along the antero-posterior axis. Using MDA, we then tested the effect of vertebral shape geometry on biomechanical function. To address this question, four different MDA models were built: those with a distal vertebral shape and with either a distal or proximal musculature, and reciprocally the proximal vertebral shape with either the proximal or distal musculature. For each muscle configuration, we calculated the force required in each muscle group for the muscle force to balance an arbitrary external force applied to the model. The results showed that the models with a distal-type of musculature are the most efficient, regardless of vertebral shape. Our models also showed that the m. ilio-caudalis pars dorsalis is least efficient when combining the proximal vertebral shape and distal musculature, highlighting the importance of the length of the transverse process in combination with the lever-moment arm onto which muscle force is exerted. This initial model inevitably has a number of simplifications and assumptions, however its purpose is not to predict in vivo forces, but instead reveals the importance of vertebral shape and muscular arrangement on the total force the tail can generate, thus providing a better understanding of the biomechanical significance of the regional variations on tail grasping performance in chameleons.


Assuntos
Lagartos , Coluna Vertebral , Cauda , Animais , Lagartos/anatomia & histologia , Músculos/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Cauda/anatomia & histologia
9.
Integr Comp Biol ; 61(2): 603-612, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-33956151

RESUMO

The elongate body plan is present in many groups of fishes, and this morphology dictates functional consequences seen in swimming behavior. Previous work has shown that increasing the number of vertebrae, or decreasing the intervertebral joint length, in a fixed length artificial system increases stiffness. Tails with increased stiffness can generate more power from tail beats, resulting in an increased mean swimming speed. This demonstrates the impacts of morphology on both material properties and kinematics, establishing mechanisms for form contributing to function. Here, we wanted to investigate relationships between form and ecological function, such as differences in dietary strategies and habitat preferences among fish species. This study aims to characterize and compare the kinematics, material properties, and vertebral morphology of four species of elongate fishes: Anoplarchus insignis, Anoplarchus purpurescens, Xiphister atropurpureus, and Xiphister mucosus. We hypothesized that these properties would differ among the four species due to their differential ecological niches. To calculate kinematic variables, we filmed these fishes swimming volitionally. We also measured body stiffness by bending the abdominal and tail regions of sacrificed individuals in different stages of dissection (whole body, removed skin, and removed muscle). Finally, we counted the number of vertebrae from CT scans of each species to quantify vertebral morphology. Principal component and linear discriminant analyses suggested that the elongate fish species can be distinguished from one another by their material properties, morphology, and swimming kinematics. With this information combined, we can draw connections between the physical properties of the fishes and their ecological niches.


Assuntos
Perciformes , Cauda/anatomia & histologia , Animais , Fenômenos Biomecânicos , Perciformes/anatomia & histologia , Perciformes/fisiologia , Especificidade da Espécie , Natação
10.
Zoology (Jena) ; 146: 125924, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33962259

RESUMO

In the American Southwest, the fishes within the genus Gila evolved in an environment with seasonal rainstorms that caused stochastic flooding. Some species within this genus, such as bonytail (Gila elegans), possess locomotor morphologies that are similar to those seen in high-performance swimmers such as tuna and lamnid sharks. These shared features include a shallow caudal peduncle, lunate tail, and mechanisms to transmit force from the anterior musculature to the tail fin. We compared the skeletal anatomy of the caudal region of bonytail to roundtail chub (Gila robusta) and humpback chub (Gila cypha) to determine which vertebral elements have been modified to create a shallow peduncle. We also tested the tensile strength of the red (slow oxidative) axial muscle by performing a standard stress test. If the muscle can withstand a large load, this suggests it may play a tendon-like role in transmitting force from the anterior muscle to the hypural plate of the tail. Lastly, we measured the collagen content of the red axial muscle (visualized using serial sections and Masson's trichrome stain) to determine if increased tensile strength is associated with increased collagen content. We found bonytail caudal peduncles are characterized by acute vertebral spines and have red axial muscle that can resist tearing under tension. Roundtail chub peduncles are characterized by relatively more obtuse angles and the red muscle tears easily under tension. Humpback chub possess an intermediate morphology, with relatively obtuse vertebral spine angles and the red muscle can resist tearing under tension. Bonytail have increased collagen content in posterior red axial muscle compared to the anterior musculature also suggesting a tendon-like role of the posterior red muscle. In combination with previous studies of swimming performance, our findings suggest that the axial musculature of bonytail may play a role in transmitting force directly to the shallow peduncle in a manner similar to that of the great lateral tendon of scombrids.


Assuntos
Cipriniformes/anatomia & histologia , Cipriniformes/fisiologia , Músculo Esquelético/fisiologia , Cauda/anatomia & histologia , Animais , Fenômenos Biomecânicos , Cauda/fisiologia
11.
Integr Comp Biol ; 61(2): 385-397, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-33871633

RESUMO

Determining how variation in morphology affects animal performance (and ultimately fitness) is key to understanding the complete process of evolutionary adaptation. Long tails have evolved many times in arboreal and semi-arboreal rodents; in deer mice, long tails have evolved repeatedly in populations occupying forested habitat even within a single species (Peromyscus maniculatus). Here, we use a combination of functional modeling, laboratory studies, and museum records to test hypotheses about the function of tail-length variation in deer mice. First, we use computational models, informed by museum records documenting natural variation in tail length, to test whether differences in tail morphology between forest and prairie subspecies can influence performance in behavioral contexts relevant for tail use. We find that the deer- mouse tail plays little role in statically adjusting center of mass or in correcting body pitch and yaw, but rather it can affect body roll during arboreal locomotion. In this context, we find that even intraspecific tail-length variation could result in substantial differences in how much body rotation results from equivalent tail motions (i.e., tail effectiveness), but the relationship between commonly-used metrics of tail-length variation and effectiveness is non-linear. We further test whether caudal vertebra length, number, and shape are associated with differences in how much the tail can bend to curve around narrow substrates (i.e., tail curvature) and find that, as predicted, the shape of the caudal vertebrae is associated with intervertebral bending angle across taxa. However, although forest and prairie mice typically differ in both the length and number of caudal vertebrae, we do not find evidence that this pattern is the result of a functional trade-off related to tail curvature. Together, these results highlight how even simple models can both generate and exclude hypotheses about the functional consequences of trait variation for organismal-level performance.


Assuntos
Evolução Biológica , Peromyscus/anatomia & histologia , Cauda , Animais , Ecossistema , Locomoção , Cauda/anatomia & histologia
12.
J Appl Anim Welf Sci ; 24(3): 321-330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33910433

RESUMO

The effect of long term captivity is a factor that is important for all research utilizing wild caught animals. Despite the fact that it can be considered to be one of the most fundamental potential sources of stress in captivity, it has received a low amount of interest in recent research on lizards. Given the wide variety in ecology and life history among lizards species, it would make sense to investigate the effect of long term captivity on wild caught lizards on a broader scale. In this study we investigated the effect of long term captivity (four months) on the physiology and behavior of male and female Anolis carolinensis lizards. Our results showed no negative effects of four months of captivity on physiological and behavioral measurements in male A carolinensis lizards. Similar results for females were found for all measurements except body mass and tail width. Here our results indicated a potential negative effect of four months of captivity on body mass and tail width in females.


Assuntos
Comportamento Animal , Lagartos/fisiologia , Estresse Fisiológico , Bem-Estar do Animal , Animais , Peso Corporal , Feminino , Lagartos/anatomia & histologia , Masculino , Cauda/anatomia & histologia
13.
Integr Comp Biol ; 61(2): 398-413, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-33881525

RESUMO

Secondary aquatic vertebrates exhibit a diversity of swimming modes that use paired limbs and/or the tail. Various secondarily aquatic tetrapod clades, including amphibians, reptiles, and mammals use transverse undulations or oscillations of the tail for swimming. These movements have often been classified according to a kinematic gradient that was established for fishes but may not be appropriate to describe the swimming motions of tetrapods. To understand the evolution of movements and design of the tail in aquatic tetrapods, we categorize the types of tails used for swimming and examine swimming kinematics and hydrodynamics. From a foundation of a narrow, elongate ancestral tail, the tails used for swimming by aquatic tetrapods are classified as tapered, keeled, paddle, and lunate. Tail undulations are associated with tapered, keeled, and paddle tails for a diversity of taxa. Propulsive undulatory waves move down the tail with increasing amplitude toward the tail tip, while moving posteriorly at a velocity faster than the anterior motion of the body indicating that the tail is used for thrust generation. Aquatic propulsion is associated with the transfer of momentum to the water from the swimming movements of the tail, particularly at the trailing edge. The addition of transverse extensions and flattening of the tail increases the mass of water accelerated posteriorly and affects vorticity shed into the wake for more aquatically adapted animals. Digital Particle Image Velocimetry reveals that the differences were exhibited in the vortex wake between the morphological and kinematic extremes of the alligator with a tapering undulating tail and the dolphin with oscillating wing-like flukes that generate thrust. In addition to exploring the relationship between the shape of undulating tails and the swimming performance across aquatic tetrapods, the role of tail reduction or loss of a tail in aquatic-tetrapod swimming was also explored. For aquatic tetrapods, the reduction would have been due to factors including locomotor and defensive specializations and phylogenetic and physiological constraints. Possession of a thrust-generating tail for swimming, or lack thereof, guided various lineages of secondarily aquatic vertebrates into different evolutionary trajectories for effective aquatic propulsion (i.e., speed, efficiency, and acceleration).


Assuntos
Organismos Aquáticos , Natação , Cauda , Animais , Evolução Biológica , Fenômenos Biomecânicos , Hidrodinâmica , Filogenia , Cauda/anatomia & histologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-33751181

RESUMO

In terrestrial legged locomotion, the distribution of mass can influence the gait characteristics. This can be due to a change in the magnitude or distribution of the load. The latter occurs in scorpions when they lift their large metasoma from a trailing position in ambulatory posture to the well-known arched forward position in the defensive posture. We measured how locomotion changes between these two postures by recording scorpions walking using high-speed video. We found that the metasoma in the fat-tailed scorpion (Androctonus australis) represents about a quarter of the total mass. Moving this mass anteriorly over the body changes the position of the center of mass forward 8.15 ± 1.86 mm. We found this increases the overall duty factor, and particularly that of the second leg pair, even when taking the reduced speed in defensive posture into account. In the five scorpions we recorded, also the ipsilateral phase of leg pairs 3 and 4 differed in defensive posture. We found that the trajectory the 4th foot describes during a single stride also differed significantly between postures, showing this to be a sensitive measure of changes in gait. The change from an ambulatory to a defensive posture places different demands on the gait of scorpions, possibly largely due to the forward displacement of the center of mass.


Assuntos
Marcha/fisiologia , Postura/fisiologia , Escorpiões/fisiologia , Somatotipos/fisiologia , Cauda/fisiologia , Animais , Feminino , Masculino , Escorpiões/anatomia & histologia , Cauda/anatomia & histologia , Gravação em Vídeo/métodos
15.
Gene ; 781: 145492, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33631247

RESUMO

Fat tail is one of the most important domesticated characteristics in sheep; however its molecular mechanism is poorly understood. Here we took small-tailed F2 hybrid of wild Argali sheep and typical fat-tailed Bashby sheep as research object. First, histological analysis revealed that the mean diameter and area in tail and subcutaneous fat cells, and surface density in tail fat in Bashby sheep were significantly larger than that in F2 sheep, and surface density of fat in subcutaneous fat in Bashby sheep was significantly lower than that in F2 sheep. Second, 873 differentially expressed genes (DEGs) of tail fat between Bashby and F2 sheep were identified by RNA-seq. Third, the tissue expression profile and relative expression difference between Bashby and F2 sheep of 7 of 873 DEGs were analyzed by RT-PCR. SCD, ESR1, EMR1, PHYH, STAT3 and GPAM genes were highly expressed in fat, muscle and liver, and ALDH1A1 were highly expressed in small intestine. In addition, the expressions of SCD, PHYH and CPAM genes in tail fat of F2 sheep were lower than that of Bashby sheep, while the expression patterns of ESR1 and EMR1 were reversed. Our findings will not only help understand molecular mechanism of fat tail, but also provide theoretical material in sheep evolution.


Assuntos
Ovinos/anatomia & histologia , Ovinos/genética , Cauda/anatomia & histologia , Adipócitos/citologia , Tecido Adiposo/anatomia & histologia , Animais , Evolução Biológica , RNA-Seq/veterinária , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
16.
J Med Primatol ; 50(2): 138-140, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33598919

RESUMO

In a captive Macaca mulatta breeding colony, a single family group with 39 animals showed 19 individuals being born with dramatic tail shortening. Through clinical, genealogical, radiographic, and cytogenetic evaluation, it was related to a probable dominant autosomal inheritance of the reduction in the number of distal caudal vertebrae.


Assuntos
Macaca mulatta/anormalidades , Doenças dos Macacos/congênito , Cauda/anormalidades , Animais , Animais de Laboratório/anormalidades , Feminino , Masculino , Cauda/anatomia & histologia
17.
Biol Open ; 10(2)2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33563609

RESUMO

Caudal autotomy in rodents is an evolutionarily acquired phenomenon enabling escape from predators, by discarding the tail skin after traumatic injuries. The histological mechanisms underlying caudal autotomy seem to differ among species. Cotton rats (Sigmodon hispidus), which are important laboratory rodents for human infectious diseases, possess a fragile tail. In this study, we compared the tail histology of cotton rats with that of laboratory rats (Rattus norvegicus), which have no fragility on their tail, to elucidate the process of rodent caudal autotomy. First, the cotton rats developed a false autotomy characterized by loss of the tail sheath with the caudal vertebrae remaining without tail regeneration. Second, we found the fracture plane was continuous from the interscale of the tail epidermis to the dermis, which was lined with an alignment of E-cadherin+ cells. Third, we found an obvious cleavage plane between the dermis and subjacent tissues of the cotton-rat tail, where the subcutis was composed of looser, finer, and fragmented collagen fibers compared with those of the rat. Additionally, the cotton-rat tail was easily torn, with minimum bleeding. The median coccygeal artery of the cotton rat had a thick smooth muscle layer, and its lumen was filled with the peeled intima with fibrin coagulation, which might be associated with reduced bleeding following caudal autotomy. Taken together, we reveal the unique histological features of the tail relating to the caudal autotomy process in the cotton rat, and provide novel insights to help clarify the rodent caudal autotomy mechanism.


Assuntos
Sigmodontinae , Pele/citologia , Cauda/anatomia & histologia , Cauda/citologia , Animais , Biomarcadores , Colágeno/metabolismo , Imuno-Histoquímica , Ratos , Regeneração , Pele/ultraestrutura , Cauda/fisiologia
18.
J Evol Biol ; 34(2): 331-338, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33164309

RESUMO

Sexual selection can in theory lead to positive and negative effect on population-level fitness and hence population increase/decline in our changing world, but the empirical evidence is scarce. Using a phylogenetic comparative approach, we examined whether and how different sexually selected ornaments affect recent population trends and extinction risk in swallows (Aves: Hirundininae). We found that population trends decreased with increasing depth of male tails, that is a well-known sexually selected trait, and increased with increasing score of reddish plumage coloration, another sexually selected ornament. Similar contrasting patterns were observed for extinction risk. These findings indicate ornament-specific population trends and extinction risk, perhaps due to the differential costs and benefits of ornamentation. Previous studies have mostly focused on the overall effects of sexual selection by combining different kinds of traits, presumed to be sexually selected. However, as predicted by theory, sexual selection would not be a process with the same universal effect on population dynamics as we found here. Divergent ecological consequences would occur through minor differences in sexual selection, which should not be dismissed in future studies.


Assuntos
Extinção Biológica , Pigmentação/genética , Caracteres Sexuais , Seleção Sexual , Andorinhas/genética , Animais , Feminino , Masculino , Filogenia , Dinâmica Populacional , Andorinhas/anatomia & histologia , Cauda/anatomia & histologia
19.
Primates ; 62(2): 343-360, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33174153

RESUMO

The present study aimed to conduct a comparative assessment of the external morphology, relative tail length and colour variation (RGB additive colour model) of Macaca munzala, Tawang and Macaca assamensis, Goalpara (southern Brahmaputra population), using a non-invasive photogrammetry method. The study revealed that the relative tail length of M. munzala (0.43 ± 0.03) is similar to that of M. assamensis assamensis, a subspecies of M. assamensis. On the other hand, the relative tail length of M. assamensis, Goalpara (0.61 ± 0.04) is similar to M. assamensis pelops, the other subspecies of M. assamensis. A total of 12 external morphological traits were observed and similarities found between the two studied populations. The study also found that the species-specific traits of M. munzala such as "dark patch of the crown whorl", "dark patch of hair at the temporal side", "spectacle appearance around eyes" and "whip-like tail appearance" in the infant and "stocky tail" are present in M. assamensis, Goalpara as well. Likewise, the "chin and cheek whiskers" are found in adult female individuals of both species. The comparative assessment of the dorsal coat colour (RGB value) revealed a darker brown dorsal coat in M. munzala (R 123.14 ± 11.62; G 107.71 ± 10.37, B 89.43 ± 9.21) than in M. assamensis, Goalpara (R 136 ± 23.57, G 112 ± 15.63, B 97.83 ± 13.04). The comparative assessment of facial skin colour among the adult individuals showed that the male M. munzala has darker brown facial skin than that of M. assamensis, whereas the female M. munzala shows darker reddish facial skin compared to M. assamensis, Goalpara. The species-specific traits of M. leucogenys were also compared, and the traits "chin and cheek whiskers", "darker dorsal coat" and "round penile" appearance have a striking resemblance to those of the M. munzala population of Tawang. Thus, the external morphological traits that are being used to distinguish these macaque species are highly variable even within the same species, and there is an urgent need to identify more precise species-specific morphological traits.


Assuntos
Macaca/anatomia & histologia , Macaca/classificação , Pelo Animal , Animais , Cor , Feminino , Índia , Masculino , Fotogrametria , Especificidade da Espécie , Cauda/anatomia & histologia
20.
Sci Rep ; 10(1): 20122, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208803

RESUMO

Reptiles are the only amniotes that maintain the capacity to regenerate appendages. This study presents the first anatomical and histological evidence of tail repair with regrowth in an archosaur, the American alligator. The regrown alligator tails constituted approximately 6-18% of the total body length and were morphologically distinct from original tail segments. Gross dissection, radiographs, and magnetic resonance imaging revealed that caudal vertebrae were replaced by a ventrally-positioned, unsegmented endoskeleton. This contrasts with lepidosaurs, where the regenerated tail is radially organized around a central endoskeleton. Furthermore, the regrown alligator tail lacked skeletal muscle and instead consisted of fibrous connective tissue composed of type I and type III collagen fibers. The overproduction of connective tissue shares features with mammalian wound healing or fibrosis. The lack of skeletal muscle contrasts with lizards, but shares similarities with regenerated tails in the tuatara and regenerated limbs in Xenopus adult frogs, which have a cartilaginous endoskeleton surrounded by connective tissue, but lack skeletal muscle. Overall, this study of wild-caught, juvenile American alligator tails identifies a distinct pattern of wound repair in mammals while exhibiting features in common with regeneration in lepidosaurs and amphibia.


Assuntos
Jacarés e Crocodilos/fisiologia , Cauda/lesões , Cauda/fisiologia , Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/lesões , Animais , Colágeno/metabolismo , Imageamento por Ressonância Magnética , Músculo Esquelético/citologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Cauda/anatomia & histologia , Cauda/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...